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In this paper odd-order heat-type equations with different random initial conditions are
examined. In particular, we give rigorous conditions for the existence of the solutions
in the case where the initial condition is represented by a strictly ϕ–subGaussian
harmonizable process η = η(x). Also the case where η is represented by a stochastic
integral with respect to a process with independent increment is studied.
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1. INTRODUCTION

Odd-order parabolic and hyperbolic partial differential equations emerge in several
applied fields.

In the book by Gardiner (1985) at page 295 a trimolecular (unstable) chemi-
cal reaction is studied and the corresponding third-order Fokker-Planck equation
(7.7.114) is derived. There are various derivations of this third-order p.d.e. (based
on the Poisson representation, see Ref. 7, page 300) and, in some contexts, in order
to study the Fokker-Planck equation
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it is necessary to analyze stochastic differential equations of the form

dy = a dt + bdW + cdV,

where W and V are independent processes. The component V is a third-order
noise whose signed distribution p = p(v, t) is governed by equations of the form

∂p

∂t
= −1

6

∂3 p

∂v3
. (1.2)

Equation (1.2) also emerges as a linear approximation of the Korteweg-de
Vries equation (see, e.g., Ref. 2 and Sec. 2 below).

The fundamental solutions of these third-order equations are signed and,
based on them, the so-called pseudoprocesses have been constructed and their
properties studied. Moreover some of the related relevant functionals (sojourn
time and maximum) have been investigated by applying a generalization of the
Feynman-Kac functional in Ref. 29. In Ref. 1 the case where the pseudoprocess is
constrained to be zero at the end of the time interval is considered; the distribution
of the maximum is then obtained under these circumstances. In the unconditional
case, the joint distribution of the maximum and of the process for this higher-order
diffusion is presented in Ref. 4.

We mention also another source of third-order equations, which is repre-
sented by the random motions at finite velocity on the line or on the plane with
three possible velocities or directions. Since the order of the equations governing
this type of finite-velocity motions equals the number of possible directions (or
velocities on the line) we can deal with equations of any order (including the
odd-order ones examined in this paper).

Odd-order heat-type equations of the form

∂u

∂t
= cn

∂2n+1u

∂x2n+1
, n = 1, 2, . . . (1.3)

(where cn = ±1), subject to the initial condition u(x, 0) = δ(x), have also been
examined by many authors: in Ref. 9 the Laplace transforms of the sojourn times
have been obtained while their inverse, and thus the explicit distributions, have
been derived in Ref. 21.

In Ref. 3 the analysis of the local time in zero of the pseudoprocesses related to
(1.3) is performed and the connection of its distribution with a fractional diffusion
equation is established and discussed.

While in all the investigations mentioned above the key tool is the Feynman-
Kac functional, the approach of Ref. 22 is somewhat different and consists in
some approximation of the underlying pseudoprocesses by means of generalized
random walks and the application of a generalization of the Spitzer identity.

The idea of studying equations of the form (1.1) subject to random initial
conditions (represented by stationary processes) is presented in Ref. 2. In the
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spirit of the last work, we analyze here more general odd-order equations of the
following form

∂u

∂t
=

N∑
k=1

ak
∂2k+1u

∂x2k+1
, N = 1, 2, . . . , (1.4)

subject to the random condition

u(0, x) = η(x), (1.5)

where η(x) = ∫
R eiux dy(u) and y is a complex-valued process. We remark that, in

the special case where η is a stationary process, y is a white noise. We present the
exact expression for the solution to the problem (1.4)–(1.5) and formulate rigorous
conditions on the initial data which guarantee that the process representing the
solution satisfies the equation with probability one (Sec. 4).

We concentrate our attention, in particular, on the case where the initial
condition is represented by a strictly ϕ–subGaussian harmonizable process. The
general conditions of Sec. 4 are reduced to a more convenient and tractable form
(see our main result in Sec. 5). We consider also the problem where the initial data
is represented by a stochastic integral with respect to a process with independent
increments (Sec. 6). Consult, on this point, for stable processes, Ref. 28 and, for
infinitely divisible processes, Ref. 30.

We note that random processes relevant for applications (as numerous recent
studies confirm) display a non-Gaussian behavior, possess heavy tails and have
non-symmetric densities. For example, in the case of the usual heat equation (and
also for the third-order heat-type equations appearing in trimolecular chemical
reactions) the non-homogeneous structure of the material makes non-symmetric
distributions for the initial conditions more plausible. However, some of these
processes can be considered as ϕ–subGaussian because they possess the corre-
sponding properties. ϕ–subGaussian random variables and processes, which are
generalizations of sub–Gaussian and Gaussian random variables and processes,
were introduced in the papers (16,18). The theory of ϕ–subGaussian random vari-
ables and processes is presented in the book(5). In Ref. 8 a more general definition
of ϕ–subGaussian random variables is introduced.

In order to make the paper self-contained, a certain digression on sub-
Gaussian and ϕ–subGaussian processes is presented in the Appendix together
with some auxiliary results needed to treat the case of initial condition represented
by stochastic integrals with respect to processes with independent increments.
Note that the case of Gaussian initial conditions is also covered by our study, as a
special case.

We would like to stress the importance of the approach developed in the
paper: we provide conditions on random initial data, which guarantee that the
solution presented here satisfies the equation with probability one. This permits



724 Beghin et al.

us to relate the solution to the equations considered here with the original physical
problem in a rigorous way.

2. MOTIVATION FOR OUR STUDY

Equation (1.4) pertains to the class of linear evolution equations. Moreover,
the coefficients of even order of the polynomial P( ∂

∂x ) in the right hand side of
(1.4) are zero, and under the assumption that all the odd order coefficients ak of
P( ∂

∂x ) are real, we have a linear wave equation which admits plane wave solutions.
The related initial value problems are interesting for their own sake, but also
because they can serve as a tool for studying nonlinear equations, as we will show
below.

Equations of the form (1.4) are also called dispersive equations. In the sim-
plest case, for N = 1, (and for k starting from 0) we have

∂u

∂t
= a0

∂u

∂x
+ a1

∂3u

∂x3
(2.1)

(also called the “weak dispersion” wave equation), which can be transformed into
the paradigmatic form of a third-order heat-type equation

∂u

∂t
= b

∂3u

∂x3
. (2.2)

The above equations (known also as Airy equations) represent the linearized
version of the celebrated Korteweg-de Vries (KdV) equation

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3
= 0. (2.3)

The KdV equation is used to model the propagation of small amplitude
unidirectional irrotational long waves on the surface of an inviscid fluid in a flat
channel (see, e.g., Ref. 33). Besides the wave propagation in water and fluids,
the KdV equation can be useful in the description of certain waves in plasma
and in a variety of other media. Under some specific assumptions or in some
limiting situations the study can be reduced to the waves which follow either the
linearized KdV Eqs. (2.1) or (2.2). A number of analytical results and computer
simulations for KdV equation and its generalizations (with the nonlinear term of
a more general form) show that its solitary wave solutions evolve accompanied
by small dispersive waves which (being considered in a certain moving frame)
develop approximately according to Eq. (2.1).

Furthermore, when we are interested in solving the initial value problem for
the KdV equation, it is very instructive to study separately its linear and nonlinear
counterparts and this is especially useful if we think of computer simulations
of solutions. Namely, the Cauchy problem for the KdV equation can be solved



On the Solutions of Linear Odd-Order Heat-Type Equations 725

numerically by using the so-called split-stepping method to combine the solutions
for ∂u

∂t + αu ∂u
∂x = 0 and ∂u

∂t + β ∂3u
∂x3 = 0 (see, e.g., Ref. 31). This justifies the study

of the Cauchy problem for the linear counterpart of the KdV equation.
It should be noted that the KdV equation is obtained, at a certain level of ap-

proximation, when higher-order dispersive effects have been neglected. However,
in many cases, physical reality requires more accuracy. Under certain circum-
stances it may happen that higher-order dispersive terms (e.g., the fifth-order
term) have a significant role in the wave propagation process. This is confirmed by
numerous studies devoted to the investigation of generalized KdV-type equations,
e.g. the equations with the same nonlinear term and the fifth-order dispersive
term instead of (or in addition to) the third-order one. We mention here some of
such contributions. Numerical studies for the KdV-type equations containing only
the fifth-order dispersive term were carried out in Refs. 27, 34 and others. The
KdV-type equation with both the third- and fifth-order dispersive term was first
proposed by Kakutani and Ono(13) in the study of magneto-acoustic waves in cold
collision-free plasma. Similar equations were studied in Ref. 11 as a model for
capillary-gravity waves. Kawahara (14) revealed different structure of wave solu-
tions to such equations depending on which is the dominating term (either the
third-order or the fifth-order one). Nagashima(26) studied the behavior of systems
governed by such equations and showed that the type of motion in the system (reg-
ular or chaotic) is determined by the initial condition and the coefficients of the
third-order and fifth-order derivatives. We note also that, in some recent studies,
wave propagation in microstructured media is modelled by even more complicated
KdV-type equations, with higher-order nonlinearity and higher order dispersive
terms, taken into account in order to compensate this nonlinearity.

Dealing with the initial value problem for the generalized KdV-type equations
mentioned above and the corresponding numerical computations (e.g. by means
of split-stepping method), it will be useful again to study their linear counterparts,
represented by equations of the form (1.4).

The above arguments justify the study of equations of the form (1.4). More-
over, in the present paper we consider the Cauchy problem with a random initial
condition, which is relevant in many practical situations. As a matter of fact, in
nature, waves exhibit random character. There exist numerous investigations of
the propagation of waves in random media which exhibit the KdV-type behavior.
Some papers related to these investigations are devoted to the propagation of an
initially deterministic wave controlled by a randomly perturbed KdV equation
(see, e.g., Ref. 32 for the case of equation with a white noise, Ref. 12 for the
case of a noise with long-range correlation, among many others). Another ade-
quate statistical description of the random character of wave propagation under
different circumstances is provided by assuming random initial conditions for
the non-random equation (here we mention, e.g., Refs. 2 and 15 for KdV and
Airy equations). Note that in many papers of the physical literature it is usual to
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characterize the time evolution of small amplitude surface gravity waves under
Gaussian assumptions. However, the behavior of these waves may become highly
non-Gaussian, as many empirical studies demonstrate. This suggests to choose
non-Gaussian initial conditions for our investigation, namely, a ϕ–subGaussian
one.

3. HARMONIZABLE RANDOM PROCESSES

We now present the definitions of integrals in the mean square sense and also
of the harmonizable random processes (see, for example, Ref. 24).

Let y = {y(t), t ∈ I } be a complex-valued, centered random process of sec-
ond order (that is E |y(t)|2 < ∞, t ∈ I ), I = [a, b] a finite or infinite interval and
�y (t, s) = Ey (t) y (s) the covariance function of y (t).

Definition 3.1. [ (24)] Let D and D′ be the following partitions of the interval
[a, b]:

D = {t j , j = 1, . . . , n + 1 : a = t1 < t2 < . . . < tn+1 = b};
D′ = {t ′

j , j = 1, . . . , m + 1 : a = t ′
1 < t ′

2 < . . . < t ′
m+1 = b}.

Let also

		′�y(tk, t ′
k) = �y(tk+1, t ′

k+1) − �y(tk+1, t ′
k) − �y(tk, t ′

k+1) + �y(tk, t ′
k).

The covariance function �y (t, s) has finite variation on the finite interval
I = [a, b] if there exists a number 0 < CI < ∞ such that, for all D and D′, the
following inequality holds

∑
t∈D

∑
t∈D′ |		′�y(t, t ′)| < CI .

The covariance function �y (t, s) has finite variation on the infinite interval I
if there exists a number C < ∞ such that CI ′ < C for all finite I ′ such that I ′ ⊂ I .

Definition 3.2. [ (24)] Let f = { f (t), t ∈ I } be a measurable function (where
I = [a, b] is a finite interval), y = {y(t), t ∈ I } a centered second-order ran-
dom process and �y(t, s) = Ey(t)y(s) the covariance function of y. The in-
tegral

∫
I f (t) dy(t) is defined as the mean square limit of the Riemann sums∑

k f (t ′
k)(y(tk+1) − y(tk)), tk ≤ t ′

k ≤ tk+1. The integral
∫

R f (t) dy(t) is defined as

the mean square limit of the integrals
∫ b
−a f (t) dy(t) as a → ∞, b → ∞. The in-

tegral
∫

I f (t) dy(t) exists iff the integral
∫

I

∫
I f (t) f (s)d�y(t, s) exists. The reader

can consult (25) for extensions of the Riemann-Stieltjes integrals.

Definition 3.3. [ (24)] The second-order random function X = {X (t), t ∈ R} is
called harmonizable if there exists a second-order random function y = {y(t), t ∈
R} such that the covariance �y(t, s) = Ey(t)y(s) has finite variation and X (t) =∫

R eitudy(u).
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Theorem 3.1. [ (24)] The second-order random function X = {X (t), t ∈ R} is
harmonizable iff there exists a covariance function �y(t, s) with finite variation
such that �x (u, v) = ∫

R

∫
R ei(tu−t ′v)d�y (t, t ′).

4. A GENERAL THEOREM ON THE SOLUTION

OF ODD-ORDER HEAT-TYPE EQUATIONS

Let us consider the linear equation

N∑
k=1

ak
∂2k+1u (t, x)

∂x2k+1
= ∂u (t, x)

∂t
, t > 0, x ∈ R1 (4.1)

subject to the random initial condition

u(0, x) = η(x), x ∈ R1, (4.2)

where ak, k = 1, . . . , N are some constants.
Let η(x), x ∈ R1, be the harmonizable process η(x) = ∫

R eiux dy (u) , with
covariance function �η (x, x ′) = ∫

R

∫
R ei(xu−x ′v)d�y (u, v).

Theorem 4.1. Let

I (t, x, λ) = exp

{
i

(
λx + t

N∑
k=1

akλ
2k+1 (−1)k

)}
, (4.3)

and

U (t, x) =
∫

R
I (t, x, λ) dy (λ) . (4.4)

If the following integrals exist∫
R

λs I (t, x, λ)dy (λ) , s = 0, 1, 2, . . . , 2N + 1, (4.5)

and if there is a sequence an > 0, an → ∞ as n → ∞, such that for all A > 0 and
T > 0 the sequence of the related integrals

∫ an

−an
λs I (t, x, λ) dy (λ) converges in

probability, uniformly for |x | ≤ A, 0 ≤ t ≤ T , then U (t, x) is the classical solution
to the problem (4.1)–(4.2).

Proof. Since
∫ an

−an
λs I (t, x, λ) dy (λ) converges in probability uniformly for

|x | ≤ A, 0 ≤ t ≤ T , then there exists a subsequence bn > 0, bn → ∞ as n → ∞,
such that

∫ bn

−bn
λs I (t, x, λ) dy(λ) converges with probability one to

∫
R λs I (t, x, λ)

dy (λ), uniformly for |x | ≤ A, 0 ≤ t ≤ T . Let

Ubn (t, x) =
∫ bn

−bn

I (t, x, λ ) dy (λ). (4.6)
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By deriving (4.6) with respect to x and t , we easily see that

N∑
k=1

ak
∂2k+1Ubn (t, x)

∂x2k+1
= ∂Ubn (t, x)

∂t
, t > 0, x ∈ R1. (4.7)

Since

∂2k+1Ubn (t, x)

∂x2k+1
converges to

∂2k+1U (t, x)

∂x2k+1

and

∂Ubn (t, x)

∂t
converges to

∂U (t, x)

∂t

uniformly for |x | ≤ A, 0 ≤ t ≤ T with probability one, we conclude that U (t, x)
satisfies Eq. (4.1) and U (0, x) = ∫

R eiλx dy (x) = η(x). �

Remark 4.1. The integrals
∫

R λs I (t, x, λ) dy (λ) exist if the twofold integrals∫
R

∫
R λsµs I (t, x, λ) I (t, x, µ) d�y (λ,µ) exist or otherwise if∫

R

∫
R

|λ|s |µ|s d�y (λ,µ) < ∞.

On the other side all the integrals
∫

R λs I (t, x, λ) dy (λ), s = 0, 1, 2, . . . ,

2N + 1, exist if
∫

R

∫
R |λ|2N+1 |µ|2N+1 d�y (λ,µ) < ∞.

Remark 4.2. Under the conditions of Theorem 4.1 we can write

cov (U (t, x), U (s, y)) =
∫

R

∫
R

I (t, x, λ)I (s, y, µ) d�y (λ,µ).

In particular, in the case where the process η(x) representing the initial condition
is centered and stationary with a spectral function F(λ), we have that

cov (U (t, x), U (s, y)) =
∫

R
I (t − s, x − y, λ) dF(λ)

and thus the solution U (t, x) is stationary in space and time.

5. THE MAIN RESULT

Assumption (�). Let ϕ be an N -function satisfying the condition Q of the
Appendix; �(u) = u

ϕ(−1)(u) , where ϕ(−1)(u) is the inverse function of ϕ(u). Let
the function θ (u), u > u0, satisfy the condition of Lemma A.2. We say that the
function θ (u), u ≥ u0 ≥ 0, satisfies the assumption � if the following integral
converges

∫
0+ �(ln(θ (−1)(ε−1)))dε < ∞, where

∫
0+ f (ε)dε denotes the integral∫ δ

0 f (ε)dε for sufficiently small δ > 0.
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Theorem 5.1. Let us consider the linear equation

N∑
k=1

ak
∂2k+1u(t, x)

∂x2k+1
= ∂u(t, x)

∂t
, t > 0, x ∈ R1 (5.1)

subject to the random initial condition

u(0, x) = η(x), x ∈ R1. (5.2)

Let η(x) be the harmonizable process defined in Definition A.6, which is a strictly
ϕ–subGaussian random process. Let θ (x), x > u0 be a function satisfying the
assumption �. Let us assume that the following integral converges∫

R

∫
R

|λ|2N+1 |µ|2N+1 θ (u0 + |λ|2N+1) θ (u0 + |µ|2N+1) d�y (λ,µ) < ∞. (5.3)

Then U (t, x) = ∫
R I (t, x, λ) dy (λ) is the solution to the problem (5.1)–(5.2)

(where I (t, x, λ) coincides with (4.3)).

Proof. It follows from Theorem 4.1 that it is sufficient to prove that there exists
a sequence an > 0, an → ∞ as n → ∞, such that the sequences Un,s(t, x) =∫ an

−an
λs I (t, x, λ) dy (λ), s = 0, 1, 2, . . . , 2N + 1 converge uniformly in probabil-

ity for |x | ≤ A, 0 ≤ t ≤ T , where A > 0 and T > 0 are some constants. Since the
random processes Un,s(t, x) are strictly subGaussian, then

τ 2
ϕ (Un,s (t, x) − Un,s (t1, x1))

≤ Cξ E |Un,s (t, x) − Un,s (t1, x1)|2

= Cξ

∫ an

−an

∫ an

−an

λsµs(I (t, x, λ) − I (t1, x1, λ))

× (I (t, x, µ) − I (t1, x1, µ)) d�y (λ,µ)

≤ Cξ

∫
R

∫
R

|λ|s |µ|s |I (t, x, λ) − I (t1, x1, λ)|

× |I (t, x, µ) − I (t1, x1, µ) |d| �y (λ,µ)|, (5.4)

where Cξ is the determining constant of the family {ξ (t), t ∈ T }. By assuming
that the function θ (u) satisfies the assumption � it is evident (bearing in mind
Lemma A.2) that

|I (t, x, λ) − I (t1, x1, λ)| =
[(

cos

(
λx + t

N∑
k=1

akλ
2k+1(−1)k

)

− cos

(
λx1 + t1

N∑
k=1

akλ
2k+1 (−1)k

))2
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+
(

sin

(
λx + t

N∑
k=1

akλ
2k+1 (−1)k

)
− sin

(
λx1 + t1

N∑
k=1

akλ
2k+1 (−1)k

))2
⎤
⎦

1/2

= 2

∣∣∣∣∣sin
1

2

(
λ(x − x1) + (t − t1)

N∑
k=1

akλ
2k+1 (−1)k

)∣∣∣∣∣

≤ 2

(∣∣∣∣sin
x − x1

2
λ

∣∣∣∣ +
∣∣∣∣∣sin

t − t1
2

(
N∑

k=1

akλ
2k+1 (−1)k

))∣∣∣∣∣
)

≤ 2

(
θ

(
u0 + |λ|

2

) (
θ

(
u0 + 1

|x − x1|
))−1

+ θ

(
u0 + 1

2

∣∣∣∣∣
N∑

k=1

akλ
2k+1 (−1)k

∣∣∣∣∣
) (

θ

(
u0 + 1

|t − t1|
))−1

)
, (5.5)

Now it follows from (5.4) and (5.5) that

sup
|t−t1 |≤h
|x−x1 |≤h

τϕ(Un,s(t, x) − Un,s(t1, x1)) ≤ Cs

θ (u0 + 1
h )

, (5.6)

where

C2
s = 2Cξ

∫
R

∫
R

|λ|s |µ|s
∣∣∣∣∣θ

(
u0 + |λ|

2

)
+ θ

(
u0 + 1

2

∣∣∣∣∣
N∑

k=1

akλ
2k+1 (−1)k

∣∣∣∣∣
)∣∣∣∣∣

×
∣∣∣∣∣θ

(
u0 + |µ|

2

)
+ θ

(
u0 + 1

2

∣∣∣∣∣
N∑

k=1

akµ
2k+1 (−1)k

∣∣∣∣∣
)∣∣∣∣∣ d�y (λ,µ) .

It is evident that the last integrals converge since (5.3) converges.
Now the theorem follows from Theorem A.1 since

σ (h) = Cs

θ
(
u0 + 1

h

) and σ (−1) (ε) = 1

θ (−1)
(Cs

ε

) − u0

, 0 < ε <
θ (u0)

Cs

that is∫
0+

�

(
ln

(
θ (−1)

(
Cs

ε

)
− u0

))
dε <

∫
0+

�

(
ln

(
θ (−1)

(
Cs

ε

)))
dε

= Cs

∫
0+

�

(
ln

(
θ (−1)

(
1

ε

)))
dε < ∞.
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Corollary 5.1. Let ϕ(x) = |x |p

p , p > 1 for sufficiently large x. Then the statement
of Theorem 5.1 holds if the following integral converges∫

R

∫
R

|λµ|2N+1 (ln (1 + λ) ln (1 + µ))α d�y (λ,µ) , (5.1)

where α is a constant such that α > 1 − 1
p .

Proof. We observe that the assumption � is satisfied for θ (x) = (ln x)α , where
α > 1 − 1

p and x > eα because
∫

0+
�

(
ln

(
θ (−1)(ε−1)

))
dε =

∫
0+

�
(
ε−1/α

)
dε

= 1

p1/p

∫
0+

ε
− 1

α
(1− 1

p )dε < ∞.

Therefore the assertion of Theorem 5.1 holds if the following integral
converges∫

R

∫
R

|λµ|2N+1
(
ln

(
eα + |λ|2N+1

)
ln

(
eα + |µ|2N+1

))α
d�y (λ,µ) < ∞,

but this integral converges if the (5.7) converges.

6. STOCHASTIC INTEGRALS WITH RESPECT TO PROCESSES

WITH INDEPENDENT INCREMENTS

Lemma 6.1. Let {ξk, k = 1, 2, . . .} be a sequence of centered independent ran-
dom variables such that E |ξk |2 = 1. Let T be a bounded interval on R and let
fk(t), k ≥ 1 be a sequence of continuous functions on T such that

∞∑
k=1

f 2
k (t) < ∞, t ∈ T . (6.1)

Assume that one can find a continuous function σ (h), h > 0, such that σ (h) is
increasing, σ (0) = 0, and for all sufficiently small ε > 0∫ ε

0

∣∣ln σ (−1)(v)
∣∣1/2

dv < ∞ (6.2)

and the following inequalities hold

sup
t,s∈T

|t−s|≤h

| fk(t) − fk(s)| ≤ bkσ (h), (6.3)
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∞∑
k=1

b2
k < ∞. (6.4)

Then the series
∑∞

k=1 ξk fk(t) converges uniformly for t ∈ T with probability one.

Proof. Consider the random pseudometric, on the space T ,

�(t, s) =
( ∞∑

k=1

ξ 2
k | fk(t) − fk(s)|2

)1/2

.

Let H�(ε) = ln(N�(ε)), where N�(ε) is the smallest number of elements of
an ε-covering of the space (T, �(t, s)). In Theorem 3.5.5 of Ref. 5 it is proved
that

∑∞
k=1 ξk fk(t) converges uniformly for t ∈ T with probability one if, with

probability one, for any sufficiently small ε > 0,∫ ε

0
|H� (v)|1/2 dv < ∞. (6.5)

We now prove that (6.5) holds. It follows from the assumption (6.3) that

sup
t,s∈T

|t−s|≤h

�(t, s) ≤
( ∞∑

k=1

ξ 2
k b2

k

)1/2

σ (h) = η1/2σ (h).

The series
∑∞

k=1 ξ 2
k b2

k = η converges with probability one since
∑∞

k=1 Eξ 2
k b2

k =∑∞
k=1 b2

k < ∞. By consulting Ref. 5 we can see that

N� (u) ≤ |T |
2σ (−1)( u

η
)

+ 1,

where |T | is the length of T . Therefore, for sufficiently small ε > 0,

∫ ε

0
|ln (N� (u))|1/2 du ≤

∫ ε

0

∣∣∣∣∣ln
(

|T |
2σ (−1)( u

η
)

+ 1

)∣∣∣∣∣
1/2

du

=
∫ ε/η

0

∣∣∣∣ln
( |T |

2σ (−1)(v)
+ 1

)∣∣∣∣
1/2

η dv

≤ η
√

2
∫ ε/η

0

∣∣ln σ (−1)(v)
∣∣1/2

dv (6.6)

because

ln

(
T

2σ (−1)(v)
+ 1

)
≤ ln

(
T

σ (−1)(v)

)
≤ ln T + ∣∣ln σ (−1)(v)

∣∣
≤ 2

∣∣ln σ (−1)(v)
∣∣ ,
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for sufficiently small v. Therefore the integral (6.6) converges with probability
one if

∫ ε

0 | ln σ (−1)(v)|1/2dv < ∞.

Let ξ (λ), λ ∈ R, be a random process with independent increments such that
Eξ (λ) = 0, E |ξ (λ) |2 < ∞ and let F(λ) be the spectral function of this process.

Let f (λ), λ ∈ R, be a function which possesses continuous derivative f ′(λ).
We suppose that

∫ ∞
−∞ f (λ) dξ (λ) exists, that is

∫ ∞
−∞ | f (λ)|2 dF(λ) < ∞.

In Ref. 6 it is shown that there is a version of ξ (λ) whose sample paths, with
probability one, are measurable, bounded on any interval [a, b], right continuous
and have only a countable set of discontinuities. It is also assumed that the process
ξ (λ) possesses limits for λ → ±∞.

In the sequel we shall consider a version of ξ (λ), for which
∫ b

a f ′(λ)ξ (λ) dλ

exists and coincides with the Lebesgue integral. Define the following integral by
means of the equality

∫ b

a
f (λ) dξ (λ) = f (b) ξ (b) − f (a) ξ (a) −

∫ b

a
ξ (λ) f ′(λ) dλ.

Such integrals, in some particular cases, were introduced in Ref. 10 and in a more
general situation were considered in Ref. 17.

Define
∫ ∞
−∞ f (λ) dξ (λ) as the limit with probability one of the integrals∫ b

a f (λ) dξ (λ) as a → −∞, b → ∞ (if this limit exists).

Theorem 6.1. Let g(t, λ) be a continuous function for t ∈ T , λ ∈ R, and let us
assume also that g′

λ(t, λ) exists and is continuous. Let ξ (λ), λ ∈ R, be a centered
random process with independent increments and spectral function F (λ). Let the
following assumptions hold∫ ∞

−∞
A2 (|λ|) dF (λ) < ∞, (6.7)

where A (λ) = max |u|≤λ

t∈T
|g (t, u)|,

sup
|t−s|≤h

|g (t, λ) − g (s, λ)| ≤ Z (|λ|) σ (h) , (6.8)

where Z (|λ|) is an increasing function such that
∫ ∞
−∞ Z2 (|λ|) dF (λ) < ∞, and

σ (h), h > 0, is a continuous function such that σ (0) = 0 and the assumption
(6.2) holds for this function.

Then the integral
∫ ∞
−∞ g (t, λ) dξ (λ) converges uniformly for t ∈ T with prob-

ability one.

Proof. To prove this theorem we use Lemma 6.1 and the method worked out in
Ref. 10. Let us introduce the random process yn (u) = ξ

(
k
n

)
for k

n ≤ u < k+1
n , and
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consider the difference of the integrals

Im =
∣∣∣∣
∫ m+1

m
g (t, λ) dξ (λ) −

∫ m+1

m
g (t, λ) dyn (λ)

∣∣∣∣
=

∣∣∣∣g (t, m + 1) ξ (m + 1) − g (t, m + 1) yn (m + 1) − g (t, m) ξ (m)

+ g (t, m) yn (m) −
∫ m+1

m
g′

λ (t, λ) (ξ (λ) − yn (λ)) dλ

∣∣∣∣
≤ A (m + 1) |ξ (m + 1) − yn (m + 1)| + A (m) |ξ (m) − yn (m)|

+ B (m)
∫ m+1

m
|ξ (λ) − yn (λ)| dλ,

where B(m) = max t∈T
m≤λ≤m+1

|g′
λ(t, λ)|. The properties of the process ξ (λ) guarantee

that Im → 0 as m → ∞ uniformly for t ∈ T with probability one.
For any ε > 0, there exists a number nε,m such that, with probability larger

than 1 − ε
2|m|+2 , the following inequality holds
∣∣∣∣
∫ m+1

m
g (t, λ) dξ (λ) −

∫ m+1

m
g (t, λ) dynε,m (λ)

∣∣∣∣ <
ε

2|m|+2
. (6.9)

Consider now the random process yε (λ) = ynε,m (λ) as m ≤ λ ≤ m + 1. For A1 <

A2 the following inequality holds∣∣∣∣
∫ A2

A1

g (t, λ) dξ (λ)

∣∣∣∣ ≤
∣∣∣∣
∫ A2

A1

g (t, λ) dξ (λ)

−
∫ A2

A1

g (t, λ) dynε,m (λ)

∣∣∣∣ +
∣∣∣∣
∫ A2

A1

g (t, λ) dynε,m (λ)

∣∣∣∣ . (6.10)

It follows from (6.9) that | ∫ A2

A1
g(t, λ)dξ (λ) − ∫ A2

A1
g(t, λ)dynε,m (λ)| ≤ ε with prob-

ability larger than 1 − ε. Therefore there exists a sequence εk → 0 as k → ∞,
such that with probability one uniformly for all A1, A2, t ∈ T

∫ A2

A1

g(t, λ) dyn,εk (λ) →
∫ A2

A1

g (t, λ) dξ (λ) . (6.11)

Therefore the assertion of the theorem holds true if the integral
∫ ∞
−∞ g (t, λ)

dyn,ε (λ) converges uniformly as t ∈ T for any ε > 0 with probability one (see
inequality (6.10)). Note that, for λs+1 > λs ,

I (t) =
∫ ∞

−∞
g (t, λ) dyn,ε (λ) =

∞∑
s=−∞

g (t, λs) (ξ (λs+1) − ξ (λs))
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=
∞∑

s=−∞
g (t, λs) δs1 (δs 
= 0)

ξ (λs+1) − ξ (λs)

δs

=
∞∑

s=−∞
g (t, λs) δs1 (δs 
= 0) ηs,

where δ2
s = F(λs+1) − F(λs) and ηs are independent random variables such that

E |ηs |2 = 1. We check that the assumptions of Lemma 6.1 hold true for the series
I (t). It follows from the assumption (6.7) that

∞∑
s=−∞

g2 (t, λs) δ2
s 12 (δs 
= 0)

≤
∞∑

s=−∞
A2 (|λs |) (F (λs+1) − F (λs)) ≤

∫ ∞

−∞
A2 (λ) dF (λ) < ∞.

We now check that the assumptions (6.3) and (6.4) hold. Indeed, it follows from
assumption (6.8) that sup t,u∈T

|t−u|≤h
|g (t, λs) − g (u, λs)| δs ≤ Z (|λs |) δsσ (|h|) and

∞∑
s=−∞

Z2 (|λs |) δ2
s =

∞∑
s=−∞

Z2 (|λs |) (F (λs+1) − F (λs))

≤
∫ ∞

−∞
Z2 (|λ|) dF (λ) < ∞.

�

Theorem 6.2. Consider the linear Eq. (4.1)

N∑
k=1

ak
∂2k+1u (t, x)

∂x2k+1
= ∂u (t, x)

∂t
, t > 0, x ∈ R1

subject to the random initial condition u(0, x) = η(x), x ∈ R1, where η(x) =∫ ∞
−∞ eiλx dξ (λ), ξ (λ) is a random process with independent increments and spec-

tral function F(λ). Let θ (x), x > x0, be a function satisfying the conditions of
Lemma A.2 and such that for sufficiently small ε > 0

∫ ε

0 ln θ (−1)(u−1)du < ∞.
Assume that the following integral converges

∫
R |λ|4N+2 θ2(u0 + |λ|2N+1)

dF(λ) < ∞.
Then U (t, x) = ∫

R I (t, x, λ) dy (λ), where

I (t, x, λ) = exp

{
i

(
λx + t

N∑
k=1

akλ
2k+1 (−1)k

)}
,

is the classical solution of problem (4.1)–(4.2).
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Proof. The proof is similar to that of Theorem 5.1 with Theorem A.1 replaced by
Theorem 6.1.‘

7. NOTE ON GENERALIZED SOLUTIONS

Generalized solutions for Eq. (4.1), with the random initial data (4.2) and
η(x) = ∫

R eiux dy(u), are given by processes of the form

U (t, x) =
∫

R
I (t, x, λ) dy (λ). (7.1)

where I (t, x, λ) = exp{i(λx + t
∑N

k=1 akλ
2k+1(−1)k)}, provided that the integral

(7.1) converges uniformly in probability for |x | ≤ A, 0 < t ≤ T for all A, T . The
condition under which the integral (7.1) converges is given below.

Condition G. There exists a sequence an > 0, an → ∞ as n → ∞, such
that for all A > 0 and T > 0 the sequence of the integrals

∫ an

−an
I (t, x, λ) dy (λ)

converges in probability to (7.1), uniformly for |x | ≤ A, 0 ≤ t ≤ T .

Condition G implies that there exists a subsequence ank > 0 of the sequence
an such that

∫ ank
−ank

I (t, x, λ)dy(λ) converges almost surely to (6.1), uniformly for

|x | ≤ A, 0 ≤ t ≤ T .
By analyzing the proofs of the results of Secs. 4, 5 and 6 we arrive at the

following statements.
Let η(x) be a harmonizable process which is strictly ϕ–subGaussian and the

function θ (x) , x > u0, be a function satisfying the assumption �. Then condition
G holds if the following integral converges

∫
R

∫
R

θ (u0 + |λ|2N+1) θ (u0 + |µ|2N+1) d�y(λ,µ) < ∞. (7.2)

When η(x) is a strictly ϕ–subGaussian stationary process η(x) =∫
R eiux dξ (u), where ξ (u) is a centered process with uncorrelated increments

(Eη(x + τ ) η(x) = ∫
R eiτλdF(λ)), the condition (7.2) becomes

∫
R

θ2(u0 + |λ|2N+1) dF(λ) < ∞. (7.3)

Let θ (x), x > x0, be a function satisfying the conditions of Lemma A.2 such that,
for sufficiently small ε > 0,

∫ ε

0 ln θ (−1)(u−1) du < ∞. Then condition G holds if∫
R θ2(u0 + |λ|2N+1) dF (λ) < ∞.
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8. APPENDIX

Definition A.1. [ (5)] Let ϕ = {ϕ(x), x ∈ R} be a continuous even convex function.
The function ϕ is an Orlicz N−function if ϕ (0) = 0, ϕ(x) > 0 as x 
= 0 and the
following conditions hold: limx→0

ϕ(x)
x = 0, limx→∞ ϕ(x)

x = ∞.

Definition A.2. [ (5)] Let ϕ = {ϕ(x), x ∈ R} be an N−function. The function ϕ∗

defined by ϕ∗(x) = supy∈R (xy − ϕ (y)) is called the Young-Fenchel transform
of ϕ.

Remark A.1. [ (5)] The Young-Fenchel transform of an N−function is again
an N−function and the following inequality holds (Young-Fenchel inequality)
xy ≤ ϕ(x) + ϕ∗ (y) as x > 0, y > 0.

Condition Q. Let ϕ be an N−function which satisfies lim inf x→0
ϕ(x)
x2 = C >

0.The case C = ∞ is possible.

Definition A.3. [ (8)] Let ϕ be an N−function satisfying Condition Q and
{�, B, P} be a standard probability space. The random variable ξ belongs to
the space Subϕ(�), if Eξ = 0, E exp{λξ} exists for all λ ∈ R and there exists a
constant a > 0 such that the following inequality holds for all λ ∈ R

E exp{λξ} ≤ exp{ϕ (λa)}. (8.1)

The space Subϕ(�) is a Banach space with respect to the norm ((18))

τϕ (ξ ) = sup
λ 
=0

ϕ(−1) (ln E exp{λξ})
|λ| .

Examples of ϕ–subGaussian random variables can be found in the paper (8) and in
the book(5).

Definition A.4. [ (20)] A family 	 of random variables ξ ∈ Subϕ(�) is called
strictly ϕ–subGaussian if there exists a constant C	 such that for all finite sets of
random variables ξi ∈ 	 the following inequality holds

τϕ

(∑
i∈I

λiξi

)
≤ C	

∣∣∣∣∣∣E
(∑

i∈I

λiξi

)2
∣∣∣∣∣∣
1/2

. (8.2)

The constant C	 is called the determining constant of the family 	.

Lemma A.1. [ (20)] The linear closure of a strictly ϕ–subGaussian family 	 in
the space L2 (�) is the strictly ϕ–subGaussian family with the same determining
constant.



738 Beghin et al.

Definition A.5. The random process ξ = {ξ (t) , t ∈ T } is called (strictly) ϕ–
subGaussian if all random variables ξ (t) , t ∈ T, are (strictly) ϕ–subGaussian and
supt∈T τϕ (ξ (t)) < ∞.

Definition A.6. A harmonizable random process η(x) = ∫
R eiux dy (u) is a strictly

ϕ–subGaussian harmonizable random process if the process y is strictly ϕ–
subGaussian.

Let (T, d) be a compact metric space and C (T ) is the Banach space of
continuous functions with uniform norm. Let Xk = {Xk (t) , t ∈ T } be a sequence
of ϕ–subGaussian random processes such that Xk ∈ C (T ) . The general conditions
of convergence in probability of Xk in the space C (T ) are presented in the book
(5). In the paper (20) these conditions are presented for the case where T is a
finite-dimensional space.

Theorem A.1. [ (20)] Let Rk be a k-dimensional space, d (t, s) = max1≤i≤k

|ti − si | , T = {0 ≤ ti ≤ Ti , i = 1, 2, . . . , k}, Ti > 0; Xn = {Xn (t) , t ∈ T } be
a sequence of ϕ–subGaussian random processes such that Xn ∈ C (T ) . Let us
assume also that there exists a continuous increasing function σ = {σ (h), h > 0},
σ (h) → 0 as h → 0, such that

sup
d(t,s)≤h

τϕ (Xn (t) − Xn (s)) ≤ σ (h) (8.3)

and
∫

0+
�

(
ln

1

σ (−1) (ε)

)
dε < ∞, (8.4)

where � (u) = u
ϕ(−1)(u) , σ (−1) (u) is the inverse function of σ (u) , ϕ(−1) (u) is the

inverse function of ϕ (u) , for u > 0, and
∫

0+ f (ε)dε denotes
∫ δ

0 f (ε)dε for suf-
ficiently small δ > 0. If the sequence of processes Xn (t) , n ≥ 1, converges in
probability to X (t) for all t ∈ T , then Xn (t) converges in probability to X (t) in
the space C (T ) .

Lemma A.2. [ (19)] Let θ (u), u ≥ u0 ≥ 0, be a continuous, increasing function
such that θ (u) > 0 and the function u

θ(u) is non-decreasing for u > u0, where
u0 ≥ 0 is a constant. Then for all u, v 
= 0

∣∣∣sin
u

v

∣∣∣ ≤ θ (|u| + u0)

θ (|v| + u0)
. (8.5)
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